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This document contains a set of appendices with supplemental material. Appendix E
extends the model to introduce worker mobility, consumption amenities, and urban
crowding costs. Appendix F derives asymptotic properties of the estimator. Appendix G
explains how we compute the minimization criterion to estimate the values of the pa-
rameters. Appendix H provides further details on the data. Appendix I explains how
we implement alternative approaches to estimate TFP. Finally, Appendix J provides
sector-level estimates using urban areas as spatial units.

APPENDIX E: LABOR MOBILITY, URBAN CROWDING COSTS, AND
CONSUMPTION AMENITIES

IN THIS SECTION, we extend the model to introduce worker mobility, consump-
tion amenities, and urban crowding costs in the spirit of Henderson (1974) and
Roback (1982). Introducing worker mobility makes city sizes endogenous and
equalizes equilibrium utility. Consumption amenities provide a reason for size
heterogeneity across cities. Urban crowding costs (which include commuting
and housing costs) provide a dispersion force that explains why workers do not
end up all concentrating in a single city in equilibrium.

Workers are now freely mobile within and across cities, and their utility func-
tion is extended to incorporate amenities. For a worker in city i, utility is given
by

Vi =Ui +Bi�(E.1)

where Ui is the subutility derived from the consumption of differentiated prod-
ucts and from the consumption of the numéraire good. It is defined just as in
equation (1) from the main text. The second term in equation (E.1), Bi, is the
level of amenities (or quality of life) in this city. This simple parameterization
for amenities is fairly standard and our imposition of additive separability is
mostly for convenience.1

Next, we incorporate urban crowding costs through a simple version of the
monocentric city model (Alonso (1964)). Production in each city takes place
at a single point. Surrounding each city’s center, there is a line with residences
of constant unit length owned by absentee landlords. A resident living at a dis-
tance x from the city center incurs a cost of commuting to and from work of

1Minimally, we would only require Vi to be quasiconcave so that the associated expenditure
function is well behaved.
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ς(2x)ρ. Land rent at the city edge (i.e., the rental price of land in the best alter-
native use) is normalized to zero. The possibility of arbitrage across residential
locations together with fixed unit lot size ensures that at the residential equi-
librium, the city is symmetric with its edges located at a distance Ni/2 of the
center (where Ni is total population in city i), and that the sum of commuting
cost and land rent expenditures is the same for all residents and is equal to the
commuting cost of those residents farthest away from the center ςNρ

i .
For simplicity, we keep a simple version of agglomeration economies where

Di = 1 for all cities, so that the effective labor supplied by an individual worker
in city i is a(Ni + δ

∑
j �=i Nj) = eAi , while retaining all other aspects of our

model. Indirect utility for a worker in city i can then be expressed as

Wi = Bi + eAi + CSi − ςNρ
i �(E.2)

where

CSi = ωi

2(γ +ηωi)
(α− Pi)

2 + ωi

γ
σ2

Pi(E.3)

is consumer surplus (CS) from consumption of the differentiated products and
the numéraire good, which depends only on the number of product varieties
available locally, ωi, and on the mean, Pi, and variance, σ2

Pi, of their prices
(Melitz and Ottaviano (2008)). Free worker mobility must equate indirect util-
ity across cities to some common level W , so that Wi =W ∀i.

Substituting (E.2), (E.3), the definition of the mean and variance of local
prices, and the pricing equation (5) into the equality Wi = W yields, for each
of the I cities, an equation relating its population, Ni, and the unit cost cut-
off for all I cities, h̄j for j = 1� � � � � I. These I equations can be solved simul-
taneously with the I free entry conditions (6) for Nj and h̄j for j = 1� � � � � I
as a function of W . Provided the urban crowding cost parameter ρ is large
enough, so that urban crowding costs eventually dominate agglomeration ben-
efits, there is a unique stable solution for population in each city for given W .
Then, conditional on which potential locations for cities are populated, the
population constraint (i.e., the equality of the sum of population in all cities
to aggregate population) determines W . Finally, to determine which cities are
populated, one must specify a mechanism for city formation. The simplest such
mechanism is to allow the absentee landlords to operate as competitive profit-
maximizing city developers as in Henderson (1974). In this case, the popula-
tion constraint determines a minimum level of amenities below which cities
are not populated. Cities with amenities above that threshold are inhabited by
the level of population N∗

i that maximizes Wi in (E.2) for the level of ameni-
ties Bi of that city. This is such that ∂N∗

i /∂Bi > 0, so that cities with greater
amenities are larger in size. If A> 0 (i.e., if ∂Ai/∂Ni > 0), this larger city goes
together with higher nominal earnings for workers due to stronger agglomer-
ation economies. If S > 0 (i.e., if ∂Si/∂Ni > 0), the larger city size also goes
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together with higher consumer surplus because consumers in larger cities en-
joy greater variety of differentiated products at more favorable prices. On the
other hand, larger cities have the disadvantage of higher costs associated with
housing and commuting, and, in equilibrium, city sizes adjust so that the net
advantages and disadvantages of larger cities exactly balance out against the
value of the amenities they provide.

For our purposes, the main point to be drawn here is that our theoretical
Proposition 1 in the main text still holds in this extended version of the model,
since it only relies on equations (6), (7), and (10), and these are still satisfied.2

APPENDIX F: ASYMPTOTIC PROPERTIES OF THE ESTIMATOR

In this section, we establish some asymptotic results for the vector of esti-
mated parameters θ̂ = (Â� D̂� Ŝ), which is chosen in a set of values denoted Φ.
These results draw from Gobillon and Roux (2010), who studied a similar (but
more general) setting. The asymptotic properties of the estimated parameters
can be established using the same line of argument as Carrasco and Florens
(2000), who studied the generalized method of moments estimator when there
is a continuum of moments. Consistency can be proved using Theorem 1 of
Carrasco and Florens (2000) under standard assumptions.

To ease the exposition, we index areas by j = 1 and i = 2. The vector of
estimated parameters verifies

θ̂ = arg min
θ∈Φ

‖Bnm̂θ‖�

where Bn is a (possibly random) sequence of bounded linear operators and

m̂θ(u)= λ̂2

(
rS(u)

) −Dλ̂1

(
S + (1 − S)rS(u)

) −A

is the empirical counterpart of mθ(u) as given by equation (21), λ̂1 and λ̂2

are some estimators of the quantile functions, and rS(u) = max(0� −S
1−S

)+ [1 −
max(0� −S

1−S
)]u. We begin by making the following assumptions:

ASSUMPTION F.1: The function F̃(·) is three times differentiable with a contin-
uous derivative. Its support is a bounded interval.

ASSUMPTION F.2: The set of admissible parameters Φ is compact.

ASSUMPTION F.3: The equation mθ = 0 has a unique interior solution θ0

within Φ.

2Provided, of course, the stability condition for the city population equilibrium holds.
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ASSUMPTION F.4: The estimators of the quantile functions are of the form

λ̂k(u)=
∫ 1

0
λs
k(v)dvKnk(u� v)� k ∈ {1�2}�

where λs
k(·) is the sample quantile function of area k, nk is the number of ob-

servations in area k (with n1 + n2 = n), and Kn(·� ·) is a general kernel function
verifying one of the following alternative subassumptions:

F.4.1 We have Kn(u�v)= (ui−u)δui−1 (v)+(u−ui−1)δui (v)

ui−ui−1
for u ∈ [ui−1�ui), where ui =

i
n
, i ∈ {0� � � � � n}, and δu(·) is a Dirac mass in u.
F.4.2 We have dvKn(u�v) = 1

ϕn
b( v−u

ϕn
)dv, where b(·) is a density and ϕn → 0

as n→ +∞.

Assumptions F.1 and F.2 are standard regularity conditions. Assumption F.1
ensures that the quantile functions take bounded values. In practice, the com-
pact set of parameters invoked in Assumption F.2 is of the form [−MA�MA] ×
[0�MD] × [−1 + ε�1 − ε] with MA and MD positive and large, and ε very small.
Assumption F.3 is an identification condition stating that there is a unique in-
terior value θ0 within Φ for which the continuum of equalities mθ0(u) = 0,
u ∈ [0�1] holds. Assumption F.4 states that the quantile estimators are either
a linear interpolation between the sample quantiles computed at the observed
ranks or some differential kernel estimators with vanishing bandwidth. These
two types of estimators are presented in the nested specification proposed
by Cheng and Parzen (1997) that makes use of the general kernel function
Kn(·� ·). Assumptions F.1 and F.4 are enough to obtain continuity and uniform
consistency of the quantile estimators:

LEMMA F.1: Under Assumptions F.1 and F.4, the functions λ̂1(·) and λ̂2(·)
are uniformly continuous over [0�1], and we have λ̂k(u) → λk(u) almost surely
uniformly for all u ∈ [0�1] when nk → +∞, where k ∈ {1�2}.

The proof for the interpolated sample quantiles is given by van der Vaart
(2000). The proof for the differential kernel estimators can be found in Bae
and Kim (2004).

Lemma F.1 ensures that the function (θ�u) → m̂θ(u) is uniformly continu-
ous. Note that this would not be the case if the estimators of the quantile func-
tions were discontinuous at values uki = i

nk
for i ∈ {1� � � � � nk − 1}. Lemma F.1

also ensures that m̂θ(u) → mθ(u) almost surely uniformly for all (θ�u) as the
sample quantiles converge to the true quantiles almost surely uniformly for
all u.

We also make some assumptions regarding the linear operator of the min-
imization program. In these assumptions, we refer to the kernel of an intre-
gral operator. The kernel �̄(·� ·) of an integral operator L is a two-dimensional
function such that (Lf)(x) = ∫ 1

0 �̄(x�u)f (u)du.



PRODUCTIVITY ADVANTAGES OF LARGE CITIES 5

ASSUMPTION F.5: There is a (nonrandom) bounded linear operator B that may
depend on θ0 but not on θ such that Bmθ0 = 0 	⇒ mθ0 = 0 and such that the
kernel of B∗

nBn, �n(·� ·) converges to the kernel of B∗B, �(·� ·) in the sense that∫ 1
0

∫ 1
0 |�n(u� v)− �(u�v)|dudv → 0 almost surely.

This assumption ensures that the sequence of bounded linear operators Bn

converges (in a specific way) to B. We can prove the following lemma, which is
used to establish the consistency of the estimated parameters.

LEMMA F.2: Under Assumptions F.1, F.2, F.3, F.4, and F.5, ‖Bnm̂θ‖ is a con-
tinuous function of θ and ‖Bnm̂θ‖ → ‖Bmθ‖ almost surely uniformly for all θ in
the set of admissible parameters when nk → +∞, k ∈ {1�2}.

PROOF: This proof is drawn from Gobillon and Roux (2010), Appendix 1.
We have

‖Bnm̂θ‖ =
∫ 1

0

∫ 1

0
�n(u�v)m̂θ(u)m̂θ(v)dudv�

The function (θ�u) → m̂θ(u) is uniformly continuous and so is (θ�u� v) →
m̂θ(u)m̂θ(v). This yields that ‖Bnm̂θ‖ is uniformly continuous. We also have

‖Bnm̂θ‖ − ‖Bmθ‖ = 〈
m̂θ�B

∗
nBnm̂θ

〉 − ‖Bmθ‖(F.1)

= 〈
m̂θ�

(
B∗

nBn −B∗B
)
m̂θ

〉 + ‖Bm̂θ‖ − ‖Bmθ‖�
Furthermore,

∣∣〈m̂θ�
(
B∗

nBn −B∗B
)
m̂θ

〉∣∣
≤ sup

u�v∈[0�1]2

∣∣m̂θ(u)m̂θ(v)
∣∣ ∫ 1

0

∫ 1

0

∣∣�n(u� v)− �(u�v)
∣∣dudv�

Since the quantiles take their values in an interval that is bounded, the function
|m̂θ(u)m̂θ(v)| is uniformly bounded in (θ�u�v) and n. Using Assumption F.5,
we get that |〈m̂θ� (B

∗
nBn −B∗B)m̂θ〉| → 0 almost surely uniformly for all θ in Φ.

We also have

‖Bm̂θ‖ − ‖Bmθ‖ = 〈
m̂θ −mθ�B

∗Bm̂θ

〉 + 〈
mθ�B

∗B(m̂θ −mθ)
〉
�(F.2)

where
〈
m̂θ −mθ�B

∗Bm̂θ

〉 = 〈
m̂θ�B

∗B(m̂θ −mθ)
〉

=
∫ 1

0

∫ 1

0

[
m̂θ(u)−mθ(u)

]
m̂θ(v)�(u�v)dudv�
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Hence ∣∣〈m̂θ�B
∗B(m̂θ −mθ)

〉∣∣
≤ sup

u

∣∣m̂θ(u)−mθ(u)
∣∣ sup

u

∣∣m̂θ(u)
∣∣ ∫ 1

0

∫ 1

0

∣∣�(u�v)∣∣dudv�
We have

∫ 1
0

∫ 1
0 |�(u�v)|dudv < +∞. This is because for |�(u�v)| > 1, we

have |�(u�v)| ≤ �(u�v)2 and
∫ 1

0

∫ 1
0 �(u�v)2 dudv < +∞ as B is bounded. Also,

supu |m̂θ(u)| is bounded uniformly for all (θ�n) ∈ Φ × N since the quantiles
are bounded according to Assumption F.1. Finally, we have supu |m̂θ(u) −
mθ(u)| → 0 almost surely uniformly for all θ ∈ Φ because of Assumption F.4.
We then get |〈m̂θ�B

∗B(m̂θ − mθ)〉| → 0 almost surely uniformly for all θ ∈ Φ
and then, from equation (F.2), ‖Bm̂θ‖ → ‖Bmθ‖ almost surely for all θ ∈ Φ.
Using equation (F.1), we finally obtain ‖Bnm̂θ‖ → ‖Bmθ‖ almost surely for all
θ ∈ Φ. Q.E.D.

PROPOSITION F.1: Under Assumptions F.1–F.5, we have θ̂ → θ0 almost surely
when nk → +∞, k ∈ {1�2}.

This proposition follows from Lemma F.1 and Lemma F.2, and its proof is a
direct application of Lemma 2.2 in White (1980, p. 736).

We now turn to the asymptotic distribution of the estimated parameters. We
adapt Theorem 2 of Carrasco and Florens (2000) on asymptotic normality to
our setting. We make an additional assumption.

ASSUMPTION F.6: The function ∂Kn

∂v
(u� v) is differentiable in u.

This ensures that m̂θ(·) is differentiable in u when S �= 0. This property will
be used when making a Taylor expansion of the function m̂θ(·). Note that As-
sumption F.6 is verified for differentiable kernel estimators defined in F.4.2,
but not for the interpolated sample quantile estimators defined in F.4.1, since
they are not differentiable at points uki = i/nk for i ∈ {1� � � � � nk − 1}. Hence,
we restrict our attention to differentiable kernel estimators. Also, the differen-
tiability of m̂θ(·) is not granted when S = 0, as the function rS(·) is not differen-
tiable for that value of the truncation parameter. Assumptions F.1, F.4.2, and
F.6 ensure the convergence of the estimated quantile functions to Brownian
bridges uniformly on any closed interval in (0�1).

LEMMA F.3: Under Assumptions F.1, F.4.2, and F.6, we have

sup
u∈[u�u]

∣∣√nk

(
λ̂k(u)− λk(u)

) − λ′
k(u)Υ

nk
k (u)

∣∣ p−→
nk→∞

0

for k ∈ {1�2} and any interval [u�u] ⊂ (0�1), where (Υ
nk
k (u))nk is a sequence of

Brownian bridges.
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PROOF: We apply the theorem of Cheng and Parzen (1997). They showed
the convergence of the estimated quantile functions to Brownian bridges under
some assumptions regarding the quantile functions and assumptions about the
function Kn(·� ·). Their conditions on the quantile functions are met under the
additional assumption that λk(·), k ∈ {1�2}, are three times differentiable. In
our setting, this is the case when F̃(·) is three time differentiable, which is
granted by Assumption F.1. Their conditions on the function Kn(·� ·) are met
when this function is a differential kernel with a vanishing bandwidth, which is
granted by Assumption F.4.2. Q.E.D.

We now show that under our assumptions, our set of estimated equalities
m̂θ0 is asymptotically normal when the number of observations in each of the
two areas goes to infinity at the same speed as n.

ASSUMPTION F.7: We have limn→∞
nk
n

=ωk > 0, k ∈ {1�2}.
LEMMA F.4: Under Assumptions F.1, F.2, F.3, F.4.2, F.5, F.6, and F.7, when

S0 �= 0, where S0 is the truncation parameter in θ0 = (A0�D0� S0),
√
nm̂θ0(·) d→

N(0� L̃) in distribution over any interval [u�u] ⊂ (0�1), where L̃ is a covariance
operator with kernel �̃θ0(·� ·) such that

�̃θ0(u� v) = λ′
2

(
rS0(u)

)
λ′

2

(
rS0(v)

)
(F.3)

×
[

1
ω2

CrS0
(u� v)+ 1

ω1

1
(1 − S0)2

CS0+(1−S0)rS0
(u)(u� v)

]
�

where Ch(u�v)= h(u)∧ h(v)− h(u)h(v).

PROOF: From Lemma F.3, we get
√
n2

(
λ̂2(u)− λ2(u)

) = λ′
2(u)

[
Υ 2

n2
(u)+ e2

n2
(u)

]
�(F.4)

√
n1

(
Dλ̂1(u)−Dλ1(u)

) =Dλ′
1(u)

[
Υ 1

n1
(u)+ e1

n1
(u)

]
�(F.5)

where limnk→∞ supu∈[u�u] |eknk(u)|
p→ 0, k ∈ {1�2}. Applying equation (F.4) in

rS(u) and equation (F.5) in r̃S(u)= S + (1 − S)rS(u), we get

m̂θ(u) = λ′
2(rS(u))√

n2

[
Υ 2

n2

(
rS(u)

) + e2
n2

(
rS(u)

)]

−D
λ′

1(r̃S(u))√
n1

[
Υ 1

n1

(
r̃S(u)

) + e1
n1

(
r̃S(u)

)]
�

Deriving the equality mθ0(u) = 0 with respect to u, we obtain

λ′
2

(
rS0(u)

) = D0(1 − S0)λ
′
1

(
r̃S0(u)

)
�
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Using these last two equations, we get

m̂
θ0
(u) = λ′

2

(
rS0(u)

)[ 1√
n2

Υ 2
n2

(
rS0(u)

) − 1√
n1

1
1 − S0

Υ 1
n1

(
r̃S0(u)

)]

+ λ′
2

(
rS0(u)

)[ 1√
n2

e2
n2

(
rS0(u)

) − 1√
n1

1
1 − S0

e1
n1

(
r̃S0(u)

)]
�

Defining en2�n1(v) =
√

n
n2
e2
n2
(rS0(u)) −

√
n
n1

1
1−S0

e1
n1
(r̃S0(u)), we deduce from the

properties of en2 and en1 that limn→∞ supv∈U |en2�n1(v)|
p→ 0. From this, we de-

duce that
√
nm̂θ0(·) converges in distribution to a normal process whose co-

variance function is denoted �̃θ0(·� ·). We have

�̃θ0(u� v) = lim
n→∞

cov
(√

nm̂θ0(u)�
√
nm̂θ0(v)

)
�

where

cov
(√

nm̂θ0(u)�
√
nm̂θ0(v)

)

= cov
(
λ′

2

(
rS0(u)

)[√
n

n2
Υ 2

n2

(
rS0(u)

) −
√

n

n1

1
1 − S0

Υ 1
n1

(
r̃S0(u)

)]
�

λ′
2

(
rS0(v)

)[√
n

n2
Υ 2

n2

(
rS0(v)

) −
√

n

n1

1
1 − S0

Υ 1
n1

(
r̃S0(v)

)])

= λ′
2

(
rS0(u)

)
λ′

2

(
rS0(v)

)[ n

n2
cov

(
Υ 2

n2

(
rS0(u)

)
�Υ 2

n2

(
rS0(v)

))

+ n

n1

1
(1 − S0)2

cov
(
Υ 1

n1

(
r̃S0(u)

)
�Υ 1

n1

(
r̃S0(v)

))]

= λ′
2

(
rS0(u)

)
λ′

2

(
rS0(v)

)[ n

n2
CrS0

(u� v)+ n

n1

1
(1 − S0)2

Cr̃S0
(u�v)

]
�

with Ch(u�v)= h(u)∧ h(v)− h(u)h(v) for a given function h. Hence

�̃θ0(u� v) = λ′
2

(
rS0(u)

)
λ′

2

(
rS0(v)

)

×
[

1
ω2

CrS0
(u� v)+ 1

ω1

1
(1 − S0)2

Cr̃S0
(u� v)

]
�

Q.E.D.

The expression of the kernel involves Ch(·� ·), which is the covariance func-
tion of a Brownian bridge when h is the identity function (h = Id). For any
other h, we have Ch(u�v) = CId(h(u)�h(v)): the covariance function of the
Brownian bridge is evaluated at the arguments once they have been trans-
formed by h. In equation (F.3), Ch(·� ·) is evaluated for functions h correspond-
ing to two rank transformations resulting from the selection process.
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Lemma F.4 is finally used in the application of Theorem 2 of Carrasco and
Florens (2000) to obtain the asymptotic distribution of the estimated parame-
ters:

PROPOSITION F.2: Under Assumptions F.1, F.2, F.3, F.4.2, F.5, F.6, and F.7, the
asymptotic distribution of θ̂ is given by

√
n(θ̂− θ0)→ N(0� V )�

with

V =
∥∥∥∥B∂mθ0

∂θ′

∥∥∥∥
−2〈

B
∂mθ0

∂θ′ �BL̃B∗B
∂mθ0

∂θ′

〉∥∥∥∥B∂mθ0

∂θ′

∥∥∥∥
−2

�

For the proof, see Carrasco and Florens (2000).

APPENDIX G: IMPLEMENTATION OF THE MINIMIZATION CRITERION

In this section, we explain how we compute the minimization criterion of
equation (25), which is used to estimate the values of the parameters.

First note that the data consist of a set of log productivities in large cities
(indexed by i) and in small cities (indexed by j), ranked in ascending order and
denoted Φi and Φj , respectively. From these data, for any θ, we need to be
able to evaluate m̂θ(u) and ˆ̃mθ(u) at any ranks u ∈ [0�1] to compute M(θ) =∫ 1

0 [m̂θ(u)]2 du + ∫ 1
0 [ ˆ̃mθ(u)]2 du. For that purpose, we construct some estima-

tors λ̂i(u) and λ̂j(u) of the quantiles λi(u) and λj(u). Focusing on large cities
(replace i with j for small cities), we start from the set of log productivities

Φi =
[
φi(0)� � � � �φi(Ei − 1)

]′
�

where Ei is the number of establishments in i and φi(0) < · · · < φi(Ei − 1).
We can construct the sample quantiles at the observed ranks as λ̂i(

k
Ei
)=φi(k)

for k ∈ {0� � � � �Ei − 1}. For any other rank u ∈ (0�1), the estimators of the
quantiles are recovered by linear interpolation,

λ̂i(u)= (
k∗
i + 1 − uEi

)
λ̂i

(
k∗
i

Ei

)
+ (

uEi − k∗
i

)
λ̂i

(
k∗
i + 1
Ei

)
�(G.1)

where k∗
i = �uEi� and �·� denotes the integer part. From equation (G.1) and

the corresponding expression for j, we can use the empirical counterparts of
equations (21) and (24),

m̂θ(u)= λ̂i

(
rS(u)

) −Dλ̂j

(
S + (1 − S)rS(u)

) −A�

ˆ̃mθ(u)= λ̂j

(
r̃S(u)

) − 1
D
λ̂i

(
r̃S(u)− S

1 − S

)
+ A

D
�
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to compute m̂θ(u) and ˆ̃mθ(u) at any rank u and for any θ. We then consider
K = 1001 ranks evenly distributed over the interval [0�1]. These ranks are de-
noted uk, k ∈ {0� � � � �K}, with u0 = 0 and uK = 1. We approximate the two
subcriteria using the formulas

∫ 1

0

[
m̂θ(u)

]2
du≈ 1

2

K∑
k=1

{[
m̂θ(uk)

]2 + [
m̂θ(uk−1)

]2}
(uk − uk−1)�

∫ 1

0

[ ˆ̃mθ(u)
]2
du≈ 1

2

K∑
k=1

{[ ˆ̃mθ(uk)
]2 + [ ˆ̃mθ(uk−1)

]2}
(uk − uk−1)�

The estimated parameters θ̂ are those that minimize the sum of these two
quantities.

APPENDIX H: FURTHER DESCRIPTION OF THE DATA

SIREN (Système d’Identification du Répertoire des ENtreprises)

These annual data contain the following information for all registered ac-
tive establishments in France: establishment identifier, year, legal status, mu-
nicipality identifier, municipality identifier for the headquarter, and four-digit
sector identifier. We note that establishments in the finance and real estate sec-
tors are not included. Over 1994–2002, the data set contains 27,282,570 obser-
vations, including 3,074,401 in 2000. A significant share of these observations
corresponds to establishments with no salaried worker.

DADS (Déclarations Annuelles de Données Sociales)

These annual data contain the following information for all establishments
with at least one salaried worker in France during the year: establishment iden-
tifier, firm identifier, year, legal status, four-digit sector identifier, total working
days, total working hours, total labor costs, and total wages.3 We note that the
last three variables are also available by skill group (see below for the definition
of skill groups).

Over 1994–2002, this data set contains 14,535,717 observations, including
1,693,312 in 2000. These numbers of establishments are smaller than for
SIREN because only establishments with at least one salaried worker are in-
cluded here.

When merging DADS with SIREN, we end up with 11,183,561 observations
at the establishment–year level including 1,298,954 for 2000. The decrease in

3In France, total wages and total labor costs differ because employers need to pay various taxes
and contributions over and above the wages paid to the employees. The most important among
these are social security and pension contributions.
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the number of observations mostly comes from the absence of the finance and
insurance sectors in SIREN.

BRN–RSI (Bénéfices Réels Normaux and Régime Simplifié d’Imposition)

These annual data result from the merge of the BRN and RSI data. All
French firms must report balance sheet information either in the “standard”
manner (larger firms), which appears in the BRN, or in a “simplified” way
(small firms), which appears in the RSI. These data contain the following in-
formation for all registered firms in France: firm identifier, year, two-digit in-
dustry identifier, number of full time equivalent workers, total revenue, value
added, operating profit (excédent brut d’exploitation), total wages, social secu-
rity and pension contributions, value of tangible assets, and value of total assets
(including intangible assets). Asset values and the shares of wages and capital
in value added were computed by Boutin and Quantin (2008), but only up to
2002. Therefore, we restrict our attention to the 1994–2002 period.

Over 1994–2002, this data set contains 16,023,214 observations, including
705,785 firms in the BRN data and 1,185,522 firms in the RSI data in 2000.

An additional decrease in the number of observations happens when merg-
ing DADS–SIREN with BRN–RSI. It occurs because firms that cease their
operations often do not make any report for their last year of activity and thus
are not present in the BRN–RSI data. We end up with 1,704,415 firms and
2,352,898 establishments observed at least once during the study period, in-
cluding 1,136,479 establishments for 2000.

Further Data Restrictions

We restrict our attention to firms in continental France (thus excluding Cor-
sica and overseas territories) in all manufacturing sectors and in business ser-
vices, with the exception of finance and insurance given their specific reporting
rules. We also exclude distribution and consumer services from our main esti-
mations. The assignment of a specific location to distribution (which involves
moving goods across locations) is difficult and the estimation of a production
function in consumer services is more problematic. This leads to a data set,
that includes 363,001 firms and 503,475 establishments. For multiestablishment
firms, we aggregate establishments at the firm–geographical unit level. This
leaves us with 430,237 establishments. We only select establishments in the
same industry as their firm and delete firms with establishments in more than
20 employment areas, as they create mass points in the data. This leaves us with
350,291 firms and 367,241 establishments (including 339,223 monoestablish-
ment firms). We retain information on all establishments from all firms with six
employees or more and finally end up with data on 148,705 firms and 166,086
establishments (including 137,014 monoestablishment firms) observed at least
once during the study period. We also report results for firms with between one
and five employees in Table 6 of the main text.
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To sum up, for each firm and each year between 1994 and 2002, we know the
firm’s value added, the value of its capital, and its sector of activity. For each
establishment within each firm, we know its location and the number of hours
worked by its employees by skill level.4

To obtain reliable estimates of A, D, and S from firm-level TFP, we need to
exclude extreme outliers. We thus trim the 1 percent of observations with the
highest TFP values and the 1 percent of observations with the lowest TFP val-
ues in each city size class, and end up with 162,765 establishments (98 percent
of 166,086) in the estimations that combine all establishments from all sectors
(such as the bottom panel of Table III) and 134,275 establishments (98 percent
of 137,013) in the majority of estimations that focus on monoestablishment
firms (such as Tables I and II).

Definition of Skill Groups

We now explain how the three skill groups (low, intermediate, and high) are
defined. For white-collar workers, we follow Burnod and Chenu (2001) since
there is no official classification.

The low-skill group includes low-skill blue collars (in craft, manufacturing,
and agriculture) and low-skill white collars (sales clerk, employees in personal
services). (In the French standard occupational classification, the following
two-digit occupations are included: 55, employés de commerce; 56, personnels
des services directs aux particuliers; 67, ouvriers non qualifiés de type industriel;
68, ouvriers non qualifiés de type artisanal; and 69, ouvriers agricoles.)

The intermediate-skill group includes high-skill blue collars (in craft, man-
ufacturing, handling, and transport), taxi drivers, and intermediate-skill white
collars (administrative employees). (In the French standard occupational clas-
sification, the following two-digit occupations are included: 54, employés ad-
ministratifs d’entreprise; 62, ouvriers qualifiés de type industriel; 63, ouvriers qual-
ifiés de type artisanal; 64, chauffeurs; and 65, ouvriers qualifiés de la manutention,
du magasinage et du transport.)

The high-skill group includes managers (in craft, manufacturing or sales),
executive and knowledge workers (doctors, lawyers, executives, professors, sci-
entists, engineers), intermediate professions (primary teachers, intermediate
professions in health, social work, administration and sales firms, religious,
technicians, foremen). (In the French standard occupational classification, the
following two-digit occupations are included: 21, chefs d’entreprise artisanale;
22, chefs d’entreprise industrielle ou commerciale de moins de 10 salariés; 23,

4The merged data set contains much more information than is usually available. For instance,
U.S.-based research relies either on sectoral surveys or on 5-year censuses for which value added
is difficult to compute. We instead have exhaustive annual data. We also have information on the
number of hours worked by skill level instead of total employment as is often the case.
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chefs d’entreprise industrielle ou commerciale de 10 salariés et plus; 31, profession-
nels de la santé et avocats; 33, cadres de la fonction publique; 34, professeurs, pro-
fessions scientifiques; 35, professions de l’information, des arts et des spectacles;
37, cadres administratifs et commerciaux d’entreprises; 38, ingénieurs et cadres
techniques d’entreprises; 42, instituteurs et assimilés; 43, professions intermédi-
aires de la santé et du travail social; 46, professions intermédiaires administratives
et commerciales des entreprises; 47, techniciens; and 48, contremaîtres, agents de
maîtrise.)

APPENDIX I: IMPLEMENTATION OF ALTERNATIVE APPROACHES TO
PRODUCTIVITY

Olley–Pakes

In this section, we present three alternative approaches to TFP estimation.
The first is the methodology proposed by Olley and Pakes (1996) to account
for the endogeneity of production factors when estimating the parameters of
equation (34). These authors considered that the residual φt can be decom-
posed into an unobserved factor ϕt , which is potentially correlated with labor
and capital, and an uncorrelated error term ηt such that φt = ϕt + ηt . They
supposed that the unobserved factor ϕt can be rewritten as its projection on its
lag and an innovation: ϕt = κ(ϕt−1) + ξt . They also made the crucial assump-
tion that capital investment at time t depends on the capital stock and the
unobserved factor ϕt : It = it(kt�ϕt). The function it is supposed to be strictly
increasing in the unobserved factor. It can be inverted such that ϕt = ft(kt� It).
Equation (28) can then be rewritten as

ln(Vt)= β2 ln(lt)+
3∑

s=1

σsls�t +Ψt(kt� It)+ηt�(I.1)

where the auxiliary function Ψt is defined as

Ψt(kt� It)= β0�t +β1 ln(kt)+ ft(kt� It)�(I.2)

Equation (I.1) can be estimated with OLS after Ψt(kt� It) has been replaced
with a third-order polynomial crossing kt , It , and year dummies. This allows
recover of some estimators of the labor and skill share coefficients (β̂2 and
σ̂s), as well as the auxiliary function (Ψ̂t). It is then possible to construct the
variable

vt = ln(Vt)− β̂2 ln(lt)−
3∑

s=1

σ̂sls�t �(I.3)

From equation (I.2), the lagged value of the unobserved factor ϕt−1 can be
approximated by Ψ̂t−1(kt−1� It−1) − β0�t−1 − β1 ln(kt−1). Using equations (I.1)–
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(I.3), and the projection of the unobserved factor on its lag, the value-added
equation then becomes

vt = β0�t +β1 ln(kt)+ κ
(
Ψ̂t−1(kt−1� It−1)−β0�t−1 −β1 ln(kt−1)

) +ϑt�(I.4)

where ϑt is a random error. The function κ(·) is approximated by a third-
order polynomial and equation (I.4) is estimated with nonlinear least squares.
We thus recover some estimators of the year dummies (β̂0�t) and the capital
coefficients (β̂1). An estimator of φt is then given by φ̂t = vt − β̂0�t − β̂1 ln(kt).

Although the Olley–Pakes method allows us to control for simultaneity, it
has some drawbacks. In particular, we need to construct investment from the
data: It = kt −kt−1. Since investment enters lagged into equation (I.4), we must
observe firms for at least three consecutive years to compute their TFP with
this method. Other observations must be dropped. Furthermore, the invest-
ment equation It = it(kt�ϕt) can be inverted only if It > 0. Hence, we can keep
only observations for which It > 0. This double selection may introduce a bias,
for instance, if (i) there is greater “churning” (i.e., entry and exits) in denser
areas and (ii) age and investment affect productivity positively. Then more es-
tablishments with a low productivity may be dropped in high density areas. In
turn, this may increase the measured difference in local productivity between
areas of low and high density. Reestimating OLS TFP on the same sample
of firms used for Olley–Pakes shows that this is, fortunately, not the case on
French data.

Levinsohn–Petrin

We also implement the approach proposed by Levinsohn and Petrin (2003).
Its main difference with Olley and Pakes (1996) is that the quantity of inputs is
used to account for the unobservables instead of investment. The unobserved
factor is then rewritten as ϕt = ft(kt� Ict), where Ict is the consumption of
inputs. Otherwise, the estimation procedure remains the same. However, we
lose fewer observations, since the use of materials instead of investment means
we need to observe firms for 2 consecutive years instead of 3.

Cost Shares

Alternatively, a TFP measure can be constructed using cost shares as esti-
mates of the labor and capital coefficients in equation (28). The costs of labor
and capital were evaluated by Boutin and Quantin (2008) for each cell defined
by the three-digit industry, the year, and the number of firm employees (less
than 5, 5–20, 20–50, 100, more than 100). The share of capital (resp. labor) in
these costs is denoted β̂1�t (resp. β̂2�t). Implicitly, we assume constant returns
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to scale as we have β̂1�t + β̂2�t = 1. The predicted value added based on capi-
tal and labor is lnV

p
t = β̂1�t ln(kt)+ β̂2�t ln(lt). The following specification can

then be estimated with OLS:

ln(Vt)− lnV
p
t = β0�t +

3∑
s=1

σsls�t + φ̃t �

Denoting β̂c
0�t and σ̂ c

s the estimated coefficients, the TFP measure is given by

ˆ̃φt = ln(Vt)− lnV p
t − β̂0�t −

3∑
s=1

σ̂sls�t �

For all methods, the TFP of a firm is the firm-level average of yearly TFP
over the period 1994–2002. The TFP estimates we recover with these four ap-
proaches are highly correlated. The correlation between OLS TFP and Olley–
Pakes TFP is 0�73. The correlation between OLS TFP and Levinsohn–Petrin
TFP is 0�85. The correlation between OLS TFP and cost-share TFP is 0�93.
Unsurprisingly, these alternative methods to estimate TFP give results that are
qualitatively similar for A, D, and S at the sector level.

APPENDIX J: ESTIMATIONS FOR URBAN AREAS

TABLE J.I

CITIES WITH POPULATION > 200,000 VERSUS POPULATION < 200,000a

OLS, Monoestablishments

Â D̂ Ŝ R2 Obs.

Sector (1) (2) (3) (4) (5)

Food, beverages, tobacco 0.062 0.966 0.003 0.951 21,187
(0.004)∗ (0.020) (0.002)

Apparel, leather 0.041 1.392 0.009 0.987 5711
(0.010)∗ (0.053)∗ (0.006)

Publishing, printing, recorded media 0.173 1.324 −0.001 0.986 8991
(0.008)∗ (0.053)∗ (0.004)

Pharmaceuticals, perfumes, soap 0.039 1.210 −0.007 0.885 1014
(0.054) (0.139) (0.056)

Domestic appliances, furniture 0.118 1.217 0.007 0.992 6172
(0.011)∗ (0.050)∗ (0.006)

Motor vehicles 0.076 1.291 0.003 0.818 1410
(0.035)∗ (0.179) (0.035)

(Continues)
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TABLE J.I—Continued

OLS, Monoestablishments

Â D̂ Ŝ R2 Obs.

Sector (1) (2) (3) (4) (5)

Ships, aircraft, railroad equipment 0.097 1.140 −0.005 0.798 966
(0.035)∗ (0.202) (0.039)

Machinery 0.076 1.057 −0.004 0.984 14,084
(0.005)∗ (0.027)∗ (0.004)

Electric and electronic equipment 0.079 1.022 −0.003 0.957 5550
(0.009)∗ (0.045) (0.005)

Building materials, glass products 0.068 1.077 0.001 0.933 3048
(0.014)∗ (0.061) (0.010)

Textiles 0.050 1.101 0.001 0.935 3273
(0.015)∗ (0.055) (0.007)

Wood, paper 0.087 1.103 −0.002 0.992 5629
(0.010)∗ (0.041)∗ (0.005)

Chemicals, rubber, plastics 0.075 1.048 0.003 0.969 5119
(0.010)∗ (0.041) (0.005)

Basic metals, metal products 0.074 1.056 0.000 0.997 13,911
(0.005)∗ (0.024)∗ (0.002)

Electric and electronic components 0.079 1.000 0.002 0.944 2485
(0.024)∗ (0.080) (0.042)

Consultancy, advertising, business services 0.190 1.101 −0.006 0.976 35,738
(0.016)∗ (0.030)∗ (0.024)

All sectors 0.087 1.241 0.000 0.998 134,275
(0.002)∗ (0.009)∗ (0.001)

aThe asterisk denotes that Â and Ŝ are significantly different from 0 at 5% and D̂ is significantly different from 1
at 5%.
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