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This document contains a set of appendices with supplemental ma-
terial. Appendix E extends the model to introduce worker mobility,
consumption amenities, and urban crowding costs. Appendix F derives
asymptotic properties of the estimator. Appendix G explains how we
compute the minimisation criterium to estimate the values of the pa-
rameters. Appendix H provides further details on the data. Appendix
I explains how we implement alternative approaches to estimate TFp.
Finally, Appendix ] provides sector-level estimates using urban areas as
spatial units.



Appendix E. Labour mobility, urban crowding costs, and consumption amenities

In this section, we extend the model to introduce worker mobility, consumption amenities, and
urban crowding costs, in the spirit of Henderson (1974) and Roback (1982). Introducing worker
mobility makes city sizes endogenous and equalises equilibrium utility. Consumption amenities
provide a reason for size heterogeneity across cities. Urban crowding costs (which include com-
muting and housing costs) provide a dispersion force that explains why workers do not end up all
concentrating in a single city in equilibrium.

Workers are now freely mobile within and across cities and their utility function is extended to

incorporate amenities. For a worker in city i, utility is given by
Vi=1U;+B;, (B.1)

where U; is the sub-utility derived from the consumption of differentiated products and from the
consumption of the numéraire good. It is defined just as in equation (1) from the main text. The
second term in equation (E.1), B;, is the level of amenities (or quality of life) in this city. This
simple parametrisation for amenities is fairly standard and our imposition of additive separability
is mostly for convenience.”

Next, we incorporate urban crowding costs through a simple version of the monocentric city
model (Alonso, 1964). Production in each city takes place at a single point. Surrounding each
city’s centre, there is a line with residences of constant unit length owned by absentee landlords.
A resident living at a distance x from the city centre incurs a cost of commuting to work and
back of ¢(2x)f. Land rent at the city edge (i.e., the rental price of land in the best alternative use) is
normalised to zero. The possibility of arbitrage across residential locations together with fixed unit
lot size ensures that at the residential equilibrium the city is symmetric with its edges located at a
distance N;/2 of the centre (wWhere N; is total population in city i), and that the sum of commuting
cost and land rent expenditures is the same for all residents and equal to the commuting cost of
those residents furthest away from the centre, gN?.

For simplicity, we keep a simple version of agglomeration economies where D; = 1 for all cities,
so that the effective labour supplied by an individual worker in city i is a(N; + 6 };+; Nj) = el
while retaining all other aspects of our model. Indirect utility for a worker in city i can then be
expressed as

W; = B; + e +CS; —gN!, (E.2)
where
wl' 2 CUi 2
CS;= ————(a—P; — 05, E.
1 2(,)/_’_17601)( l) + v Pi ( 3)

is consumer surplus from the consumption of the differentiated products and the numéraire good,
which depends only on the number of product varieties available locally, w;, and on the mean, P;,
and variance, ‘7131‘/ of their prices (Melitz and Ottaviano, 2008). Free worker mobility must equate

indirect utility across cities to some common level W, so that W; = W, Vi.

Minimally, we would only require V; to be quasi-concave so that the associated expenditure function is well-
behaved.



Substituting (E.2), (£.3), the definition of the mean and variance of local prices, and the pricing
equation (5) from the main text into the equality W; = W yields, for each of the I cities, an equation
relating its population, N; and the unit cost cut-off for all I cities, flj forj = 1,...,1. These I
equations can be solved simultaneously with the I free entry conditions (6) from the main text
for Nj and fz]' forj =1,...,I as a function of W. Provided the urban crowding cost parameter p
is large enough, so that urban crowding costs eventually dominate agglomeration benefits, there
is a unique stable solution for population in each city for given W. Then, conditional on which
potential locations for cities are populated, the population constraint (i.e., the equality of the sum
of population in all cities to aggregate population) determines W. Finally, to determine which cities
are populated one must specify a mechanism for city formation. The simplest such mechanism is
to allow the absentee landlords to operate as competitive profit-maximising city developers as in
Henderson (1974). In this case, the population constraint determines a minimum level of amenities
below which cities are not populated. Cities with amenities above that threshold are inhabited by
the level of population N/ that maximises W; in (E.2) for the level of amenities B; of that city. This
is such that dN; /dB; > 0, so that cities with greater amenities are larger in size. If A > 0 (i.e,,
if dA;/dN; > 0), this larger city goes together with higher nominal earnings for workers due to
stronger agglomeration economies. If S > 0 (i.e, if dS;/9dN; > 0), the larger city size also goes
together with higher consumer surplus because consumers in larger cities enjoy greater variety
of differentiated products at more favourable prices. On the other hand, larger cities have the
disadvantage of higher costs associated with housing and commuting, and in equilibrium city sizes
adjust so that the net advantages and disadvantages of larger cities exactly balance out against the
value of the amenities they provide.

For our purposes, the main point to be drawn here is that our theoretical proposition 1 in the
main text still holds in this extended version of the model, since it only relies on equations (6), (7),

and (10) from the main text, and these are still satisfied.?

Appendix F. Asymptotic properties of the estimator

In this section, we establish some asymptotic results for the vector of estimated parameters § =
(A, D,S ), which is chosen in a set of values denoted @. These results draw from Gobillon and Roux
(2010) who study a similar (but more general) setting. The asymptotic properties of the estimated
parameters can be established using the same line of argument as Carrasco and Florens (2000),
who study the GMM estimator when there is a continuum of moments. Consistency can be proved
using Theorem 1 of Carrasco and Florens (2000) under standard assumptions.

To ease the exposition, we index areas by j = 1 and i = 2. The vector of estimated parameters
verifies

0= in|| B 1ft|| ,
arg min|| Bty |
where B, is a (possibly random) sequence of bounded linear operators and

titg(u) = Aa(rs(u)) — DAL (S + (1 — S)rs(u)) — A

*Provided, of course, the stability condition for the city population equilibrium holds.



is the empirical counterpart of mg(u) as given by equation (21) in the main text, A; and A, are some
estimators of the quantile functions, and rs(#) = max (0, %) + [1 —max (0, %)] u. We begin
by making the following assumptions:

Assumption F1. F(+) is three times differentiable with a continuous derivative. Its support is a

bounded interval.
Assumption F.2. The set of admissible parameters ¢ is compact.
Assumption E.3. The equation my = 0 has a unique interior solution 6y within &.

Assumption F.4. The estimators of the quantile functions are of the form

a~

1
Ak(u):./o A3 (0)doKo, (1,0), k€ {12},

where Aj(-) is the sample quantile function of area k, 1 is the number of observations in area
k (with n; +ny = n), and K,(-,) is a general kernel function verifying one of the following
alternative sub-assumptions:

(ui—1)0u;_y (v)+(u—1;-1)0u, (v)
Ui—uj—q

F4.1. K, (u,0) =

0y (+) is a Dirac mass in u.

, for u € [u;j_1,u;), where u; = %, i € {0,..,n}, and

F4.2. d,K, (u,0) = #b (7;7”) dv with b (-) a density and ¢, — 0 as n — +o0.

Assumptions F.1 and F.2 are standard regularity conditions. Assumption F.1 ensures that the
quantile functions take bounded values. In practice, the compact set of parameters invoked in
Assumption F.2 is of the form [—-My, M 4] x [0, Mp] x [-1 +¢€,1 — €] with M4 and Mp positive
and large, and € very small. Assumption E.3 is an identification condition stating that there is a
unique interior value 6y within @ for which the continuum of equalities mg, (1) = 0, u € [0,1]
holds. Assumption F.4 states that the quantile estimators are either a linear interpolation between
the sample quantiles computed at the observed ranks, or some differential kernel estimators with
vanishing bandwidth. These two types of estimators are presented in the nested specification
proposed by Cheng and Parzen (1997) that makes use of the general Kernel function K, (-,-) defined
above. Assumptions F.1 and F.4 are enough to obtain the continuity and uniform consistency of

the quantile estimators:

Lemma F.1. Under Assumptions F.1 and F.4, the functions A () and A, (+) are uniformly continuous
over [0,1] and we have A;(u) — Ai(u) almost surely uniformly for all u € [0,1] when r; — oo,
where k € {1,2}.

Proof The proof for the interpolated sample quantiles is given by van der Vaart (2000). The proof
for the differential kernel estimators can be found in Bae and Kim (2004). O

Lemma F.1 ensures that the function (6,u) — 1fig(u) is uniformly continuous. Note that this
would not be the case if the estimators of the quantile functions were discontinuous at values

U = nik fori € {1,..,ny —1}. Lemma F.1 also ensures that 171y (1) — mg(u) almost surely uniformly



for all (6,u) as the sample quantiles converge to the true quantiles almost surely uniformly for all
u.
We also make some assumptions regarding the linear operator of the minimisation program. In

these assumptions, we refer to the kernel of an intregral operator. The kernel /(-,-) of an integral

1
operator L is a two-dimensional function such that: (Lf) (x) = [ (x,u) f (u) du.
0

Assumption E.5. There is a (non-random) bounded linear operator B which may depend on 6y but
not on 6 such that Bmg, = 0 = my, = 0, and such that the kernel of B;;B,, ¢,(-,-), converges to

11
the kernel of B*B, {(-,-), in the sense that: [ [ |¢,(u,0) — £(u,0)| dudv — 0 almost surely.
00

This assumption ensures that the sequence of bounded linear operators B, converges (in a
specific way) to B. We can prove the following lemma which is used to establish the consistency of
the estimated parameters.

Lemma F.2. Under Assumptions F.1, F.2, F.3, F4, and E5, ||B,#]| is a continuous function of 6
and ||B,ig|| — ||Bmg|| almost surely uniformly for all 6 in the set of admissible parameters when
Ny — 400,k € {1,2}

Proof This proof is drawn from Gobillon and Roux (2010), Appendix 1. We have

11
|| Bntitg|| = //En (u,v) 11y (1) g (v) dudo.
00

The function (6,u) — 1y (1) is uniformly continuous and so is (0,u,v) — ity (1) 1i1g (v). This yields
that || B,r1g|| is uniformly continuous. We also have
[Butitg|| — || Bme|| = (ifig, By Butitg) — || Brg||

— {iitg, (B;By — B'B) ttg) + || Bitg|| — || Brmy|| - (+.1)

Furthermore,

11
\(1g, (BB, — B*B) 1itg)| < sup |ritg (1) ritg (v)y//wn (1,0) — € (1,0)| dudo.
0

u,ve[O,l]z 0
Since the quantiles take their values in an interval which is bounded, the function |1ty (1) 119 (v)]| is
uniformly bounded in (6,u,v) and n. Using Assumption F.5, we get that | (17, (BB, — B*B) 1i1ig)| —
0 almost surely uniformly for all 6 in @. We also have
|| Brftg|| — ||Bmgl|| = (1716 — mg,B* Biftg) + (mg,B" B (119 — my)) , (F.2)

where

11
{if1g — 11, B* Biftg) = (1itg,B*B (1itg — mg)) = / / (116 (1) — g ()] 1g (0) € (,0) dudo.
00

N



Hence

11
[, B* B (1t — ma)) | < sup ity () = mg ()| sup sto ()] [ [ ¢ (10)| dudlo.
u u 00
11
We have [ [ |¢(u,0)|dudv < +oo. This is because for |£ (u,v)| > 1, we have: | (u,0)| < ¢ (u,0)?

11 00
and [ [/ (u,0)*dudv < +oo as B is bounded. Also, sup |ritg ()| is bounded uniformly for all
00 u
(6,n) € @ x N since the quantiles are bounded according to Assumption F.1. Finally, we have
sup |riig (1) —mp (u)| — 0 almost surely uniformly for all & € & because of Assumption F4.
u

We then get: |(rf19,B*B (1f1ig — my))| — 0 almost surely uniformly for all § € & and then, from
equation (F.2), || Briig|| — ||Bmy|| almost surely for all 6 € @. Using equation (F.1), we finally obtain:
|| Butitg|| — ||Bmyg|| almost surely for all 6 € &. O

Proposition F.1. Under Assumptions F.1-F.5, we have [ o almost surely when n, — +oc0, k €
{1,2}.

Proof This proposition follows from Lemma F.1 and Lemma F.2 and its proof is a direct application
of Lemma 2.2 in White (1980, p. 736). O

We now turn to the asymptotic distribution of the estimated parameters. We adapt Theorem
2 of Carrasco and Florens (2000) on asymptotic normality to our setting. We make an additional
assumption.

Assumption F.6. aaf]” (u,v) is differentiable in u.

This ensures that 1y (-) is differentiable in # when S # 0. This property will be used when
making a Taylor expansion of the function 1 (-). Note that Assumption E6 is verified for differ-
entiable kernel estimators defined in F.4.2, but not for the interpolated sample quantile estimators
defined in F4.1 since they are not differentiable at points uy; = i/ny for i € {1,...,n; — 1}. Hence,
we will restrict our attention to differentiable kernel estimators. Also, the differentiability of
1i1g (+) is not granted when S = 0 as the function rg(-) is not differentiable for that value of the
truncation parameter. Assumptions F.1, F.4.2, and F.6 ensure the convergence of the estimated

quantile functions to Brownian bridges uniformly on any closed interval in (0,1).

Lemma F.3. Under Assumptions F.1, F.4.2, and F.6, we have

sup | /e(Ax (1) = Ag (1)) = Af () i (u)| 2 0,

ue [ﬂ,ﬁ] np— 00

for k € {1,2}, and any interval [,u] C [0,1], where (Y;* (u))

0y is a sequence of Brownian bridges.

Proof We apply the theorem of Cheng and Parzen (1997). They show the convergence of the
estimated quantile functions to Brownian bridges under some assumptions regarding the quantile
functions and assumptions about the function Kj, (-,-). Their conditions on the quantile functions
are met under the additional assumption that Ay (-), k € {1,2} are three times differentiable. In
our setting, this is the case when F (+) is three time differentiable, which is granted by Assumption
E.1. Their conditions on the function K, (-,-) are met when this function is a differential kernel with

a vanishing bandwidth, which is granted by Assumption F.4.2. O



We now show that under our assumptions, our set of estimated equalities 71q, is asymptotically
normal when the number of observations in each of the two areas goes to infinity at the same speed

as n:
Assumption E7. lim = wp >0,k e{1,2}.
n—oo

Lemma F.4. Under Assumptions F.1, F.2, F3, F4.2, F.5, E6, and F7, when Sy # 0 where Sy is the
truncation parameter in 6y = (Ao,Do,So), v/nig, (.) 4N (0,L) in distribution over any interval

[u,u] C (0,1) where L is a covariance operator with kernel 7y, (-,-) such that:

Y/ / / 1 1 1
loy (u,0) = Ay (rs, (1)) Az (rs, () [wzcrso (u,0) + amcsﬁ(l*%)rso(“) (u,v)] , (B3)
where Cj, (u,0) = h (u) ANh(v) —h(u) h(v).
Proof From Lemma F.3, we get
Via (A (u) = Az (u)) = A (u) [Yg, (u) +e, (u)] (F.4)
Vi (DAy (u) — DAy (1)) = DA} (u) [Y )+ el (u ] (F.5)

where lim sup e} (u)| 50, k € {1,2}. Applying equation (r.4) in rs (#) and equation (.5) in

nk%oo [M u]

Fs(u) =S+ (1—S)rs(u), we get

Deriving the equality myg, (1) = 0 with respect to u, we obtain
As (rs, (1)) = Do (1= So) A1 (s, (1)) -

Using these last two equations, we get

iy (1) = Ay (rs, () [\}Y (s, (1)) —

L1 Y, (7
Jii1—8 "
1 1 1
/ [ —_—
+A2(r50(u)) |:\/E \/Tl>11—5()en1

Defining e, », (v) =, /nﬂzeﬁ2 (rsy () =/ 1_150 ey, (Fs, (1)), we deduce from the properties of ey,

and e, that hm n sup lenyny (V)] % 0. From this, we deduce that V/nifg, (+) converges in distribution
Cyel

to a normal process whose covariance function is denoted g, (-,-). We have

en, (rs, () =

Co, (u,0) = lim cov (\/nifg, (1) ,v/nifig, (v)) ,

n—00



where
cov (/g (u) v/ritg, (0))
I ( ny2 _ fn_ 1 y1 (5
(A 5 (rs, (u >>[ Y2 (rs, (u >> V=

s ()]
(rs, (@ [ﬁ (s (0)) = [ s Y (s, (2))]
u)) Y2, (rs, (2)) ]
Foo (1)) YA, (Fs, (2))

= Ab (rs, (1)) Ay (rs, (0))

+L cov (Y,

m (1- 5)2
1

= X (rs, (1)) M (15, (v) [c (1) + 3G <u,v>] ,

with Cp, (u,v) = h (u) ANh(v) —h (u) h (v) for a given function h. Hence:

Ty (w,2) = Vg s, (1)) 24 (15, (0) [jc )+ o 5 (um)] .

O]

The expression of the kernel involves Cj, (-,-) which is the covariance function of a Brow-
nian bridge when # is the identity function (h = I;). For any other h, we have Cj (u,v) =
Cr, (h(u),h (v)): the covariance function of the Brownian bridge is evaluated at the arguments
once they have been transformed by h. In equation (¥.3), Cj, (+,) is evaluated for functions h
corresponding to two rank transformations resulting from the selection process.

Lemma Fj4 is finally used in the application of Theorem 2 of Carrasco and Florens (2000) to
obtain the asymptotic distribution of the estimated parameters:

Proposition F.2. Under Assumptions F.1, F2, E3, F.4.2, E5, F.6, and F.7, the asymptotic distribution

of § is given by
Vi (0—6)) - N(OV),
with
|| ,9me || omy, dmy, am90
V= HB a0’ <B a6’ BLBB a0’ 89’
Proof See Carrasco and Florens (2000). O

Appendix G. Implementation of the minimisation criterium

In this section, we explain how we compute the minimisation criterium of equation (25) in the
main text, which is used to estimate the values of the parameters.

First note that the data consist of a set of log productivities in large cities (indexed by i) and in
small cities (indexed by j), ranked in ascending order and denoted ®; and ®; respectively. From
these data, for any 6, we need to be able to evaluate 1ig(1) and 7i1g(u) at any ranks u € [0,1] to
compute M(0) = fol (1719 (1)) > + fol (1119 (1) ] *du. For that purpose, we construct some estimators



Ai(u) and Aj(u) of the quantiles A; (1) and A;(u). Focusing on large cities (replace i with j for small

cities), we start from the set of log productivities

@; = [¢:(0),...,¢:(E: —1)]",

where E; is the number of establishments in i and ¢;(0) < ... < ¢;(E; — 1). We can construct the
sample quantiles at the observed ranks as A; (E%) = ¢;(k) for k € {0,...,E; —1}. For any other
rank u € (0,1), the estimators of the quantiles are recovered by linear interpolation:

A ~ [k} ~ (ki +1
Ai(u) = (kj +1—uE;) A <El> + (UE; — k) A; < ZE- ) , (G.1)
1 1
where kf = |[uE;] and |.| denotes the integer part. From equation (G.1) and the corresponding

expression for j, we can use the empirical counterparts of equations (21) and (24) in the main text,

rﬁg(u) = ;\i <7’5(u)) — D;\] (S + (1 — S)Ts(u)) — A ,
2 - 14 775 (1/[) —-S A

() = A (Fs(w)) = (1_5) D

to compute 715 (1) and 7itg (1) at any rank u and for any 6. We then consider K = 1001 ranks evenly

distributed over the interval [0,1]. These ranks are denoted uy, k € {0,...,K}, with ug = 0 and

ug = 1. We approximate the two subcriteria using the formulas:

;oo 33 (it -+ D0} o= )
1 2 Zd ~ 1 K S 2 S 2
/0 (1119 (1)) "du ~ Ekzzl { (119 (1x) ]~ + [t (up—1)] } (g — up—1) -

The estimated parameters 6 are those which minimise the sum of these two quantities.

Appendix H. Further description of the data

SIREN (‘Systeme d’ldentification du Répertoire des ENtreprises’)

These annual data contain the following information for all registered active establishments in
France: establishment identifier, year, legal status, municipality identifier, municipality identifier
for the headquarter, and four-digit sector identifier. We note that establishments in the finance and
real estate sectors are not included. Over 1994—2002, the dataset contains 27,282,570 observations
including 3,074,401 in 2000. A significant share of these observations corresponds to establish-

ments with no salaried worker.

DADS (“Déclarations Annuelles de Données Sociales’)

These annual data contain the following information for all establishments with at least one
salaried worker in France during the year: establishment identifier, firm identifier, year, legal

status, four-digit sector identifier, total working days, total working hours, total labour costs, and



total wages.> We note that the last three variables are also available by skill group (see below for
the definition of skill groups).

Over 1994-2002, this dataset contains 14,535,717 observations including 1,693,312 in 2000. These
numbers of establishments are smaller than for SIREN because only establishments with at least one
salaried worker are included here.

When merging pDADs with sIREN, we end up with 11,183,561 observations at the establishment-
year level including 1,298,954 for 2000. The decrease in the number of observations mostly comes
from the absence of the finance and insurance sectors in SIREN.

BRN-RSI (‘Bénéfices Réels Normaux” and ‘Régime simplifié d’imposition’)

These annual data result from the merge of the BRN and RrsI data. All French firms must report
balance sheet information either in the ‘standard” manner (larger firms) and appear in BRN or in a
‘simplified” way (small firms) and appear in RsI. These data contain the following information for
all registered firms in France: firm identifier, year, two-digit industry identifier, number of full time
equivalent workers, total revenue, value added, operating profit (‘excédent brut d’exploitation’),
total wages, social security and pension contributions, value of tangible assets, and value of total
assets (including intangible assets). Asset values and the shares of wages and capital in value
added were computed by Boutin and Quantin (2008), but only up to 2002. Therefore we restrict
our attention to the 1994-2002 period.

Over 1994-2002, this dataset contains 16,023,214 observations including 705,785 firms in the BRN
data and 1,185,522 firms in the rs1 data in 2000.

An additional decrease in the number of observations happens when merging DADS-SIREN with
BRN-RSI. It occurs because firms that cease their operations often do not make any report for their
last year of activity and thus are not present in the BRN-Rs1 data. We end up with 1,704,415 firms
and 2,352,898 establishments observed at least once during the study period, including 1,136,479
establishments for 2000.

Further data restrictions

We restrict our attention to firms in continental France (thus excluding Corsica and overseas
territories) in all manufacturing sectors and in business services, with the exception of finance and
insurance given their specific reporting rules. We also exclude distribution and consumer services
from our main estimations. The assignment of a specific location to distribution (which involves
moving goods across locations) is difficult and the estimation of a production function in consumer
services is more problematic. This leads to a dataset including 363,001 firms and 503,475 estab-
lishments. For multi-establishment firms, we aggregate establishments at the firm-geographical
unit level. This leaves us with 430,237 establishments. We only select establishments in the same
industry as their firm and delete firms with establishments in more than 20 employment areas as

they create mass points in the data. This leaves us with 350,291 firms and 367,241 establishments

3In France, total wages and total labour costs differ because employers need to pay various taxes and contributions
over and above the wages paid to the employees. The most important among those are social security and pension
contributions.



(including 339,223 mono-establishment firms). We retain information on all establishments from
all firms with 6 employees or more and finally end up with data on 148,705 firms and 166,086
establishments (including 137,014 mono-establishment firms) observed at least once during the
study period. We also report results for firms with between 1 and 5 employees in table 6 of the
main text.

To sum up, for each firm and each year between 1994 and 2002, we know the firm’s value added,
the value of its capital, and its sector of activity. For each establishment within each firm, we know
its location, and the number of hours worked by its employees by skill level .+

To obtain reliable estimates of A, D, and S from firm-level TFP, we need to exclude extreme
outliers. We thus trim the 1 percent of observations with the highest Trp values and the 1 per-
cent of observations with the lowest TFp values in each city size class and end up with 162,765
establishments (98 percent of 166,086) in the estimations that combine all establishments from all
sectors (such as the bottom panel of table 3) and 134,275 establishments (98 percent of 137,013) in
the majority of estimations that focus on mono-establishment firms (such as tables 1 and 2).

Definition of skill groups

We now explain how the three skill groups (low, intermediate and high) are defined. For white-
collar workers we follow Burnod and Chenu (2001) since there is no official classification.

The low-skill group includes low-skill blue collars (in craft, manufacturing and agriculture)
and low-skill white collars (sales clerk, employees in personal services). (In the French standard
occupational classification, the following two-digit occupations are included: 55, employés de
commerce; 56, personnels des services directs aux particuliers; 67, ouvriers non qualifiés de type
industriel; 68, ouvriers non qualifiés de type artisanal; and 69, ouvriers agricoles.)

The intermediate-skill group includes high-skill blue collars (in craft, manufacturing, handling,
and transport), taxi drivers, and intermediate-skill white collars (administrative employees). (In
the French standard occupational classification, the following two-digit occupations are included:
54, employés administratifs d’entreprise; 62, ouvriers qualifiés de type industriel; 63, ouvriers
qualifiés de type artisanal; 64, chauffeurs; and 65, ouvriers qualifiés de la manutention, du maga-
sinage et du transport.)

The high-skill group includes managers (in craft, manufacturing or sales), executive and knowl-
edge workers (doctors, lawyers, executives, professors, scientists, engineers), intermediate pro-
fessions (primary teachers, intermediate professions in health, social work, administration and
sales firms, religious, technicians, foremen). (In the French standard occupational classification,
the following two-digit occupations are included: 21, chefs d’entreprise artisanale; 22, chefs
d’entreprise industrielle ou commerciale de moins de 10 salariés; 23, chefs d’entreprise industrielle
ou commerciale de 10 salariés et plus; 31, professionnels de la santé et avocats; 33, cadres de

la fonction publique; 34, professeurs, professions scientifiques; 35, professions de l'information,

4The merged data set contains much more information than is usually available. For instance, us-based research
relies either on sectoral surveys or on five-yearly censuses for which value added is difficult to compute. We instead
have exhaustive annual data. We also have information on the number of hours worked by skill level instead of total
employment as is often the case.

10



des arts et des spectacles; 37, cadres administratifs et commerciaux d’entreprises; 38, ingénieurs
et cadres techniques d’entreprises; 42, instituteurs et assimilés; 43, professions intermédiaires de
la santé et du travail social; 46 : professions intermédiaires administratives et commerciales des

entreprises; 47, techniciens; and 48, contremaitres, agents de maitrise.)

Appendix I. Implementation of alternative approaches to productivity

Olley-Pakes

In this section, we present three alternative approaches to TP estimation. The first is the method-
ology proposed by Olley and Pakes (1996) to account for the endogeneity of production factors
when estimating the parameters of equation (34) in the main text. These authors consider that the
residual ¢; can be decomposed into an unobserved factor ¢; which is potentially correlated with
labour and capital, and an uncorrelated error term #; such that: ¢; = ¢; + 1. They suppose
that the unobserved factor ¢; can be rewritten as its projection on its lag and an innovation:
¢t = K (¢1—1) + G+ They also make the crucial assumption that capital investment at time t depends
on the capital stock and the unobserved factor ¢;: I; = i; (kt, ;). The function i; is supposed to be
strictly increasing in the unobserved factor. It can be inverted such that: ¢; = f; (k,I;). Equation

(28) in the main text can then be rewritten as:
In(V;) = BaIn(ly) + Z Oslst + ¥ (ke It) +1¢ (r.1)
where the auxiliary function Y¥; is defined as

i (ke It) = Bor + B1In(ke) + fi (ke Iy) . (1.2)

Equation (1.1) can be estimated with oLs after ¥; (k,I;) has been replaced with a third-order
polynomial crossing k;, I; and year dummies. This allows to recover some estimators of the labour
and skill share coefficients (32 and 0;), as well as the auxiliary function (‘f’t). It is then possible to

construct the variable
o =In(V;) = faln(ly) — Yo 0ulss (13)

From equation (1.2), the lagged value of the unobserved factor ¢;_; can be approximated by
¥ 1 (ki—1,Ii—1) — Bos—1 — B1In(k;_1). Using equations (1.1), (1.2), (1.3), and the projection of the
unobserved factor on its lag, the value-added equation then becomes:

v = Bos + BrIn(k) +x (Fi1 (ke—1,Li—1) — Boe—1 — P11In(ki—1)) + 0, (1.4)

where 9; is a random error. The function «(.) is approximated by a third-order polynomial and
equation (1.4) is estimated with non-linear least squares. We thus recover some estimators of the
year dummies (Bo;) and the capital coefficients (8;). An estimator of ¢ is then given by ¢ =
— Bo — B1In(ks).
Although the Olley-Pakes method allows us to control for simultaneity, it has some drawbacks.
In particular, we need to construct investment from the data: I; = k; — k;_;. Since investment enters

lagged into equation (1.4), we must observe firms for at least three consecutive years to compute
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their TrP with this method. Other observations must be dropped. Furthermore, the investment
equation I; = i;(k;,¢;) can be inverted only if I; > 0. Hence, we can keep only observations
for which I; > 0. This double selection may introduce a bias, for instance, if (i) there is greater
‘churning’ (i.e. entry and exits) in denser areas, and (ii) age and investment affect productivity
positively. Then, more establishments with a low productivity may be dropped in high density
areas. In turn, this may increase the measured difference in local productivity between areas of
low and high density. Re-estimating oLs TFP on the same sample of firms used for Olley-Pakes

shows that this is, fortunately, not the case on French data.

Levinsohn-Petrin

We also implement the approach proposed by Levinsohn and Petrin (2003). Its main difference
with Olley and Pakes (1996) is that the quantity of inputs is used to account for the unobservables
instead of investment. The unobserved factor is then rewritten as ¢; = f; (k¢,Ic;) where Ic; is the
consumption of inputs. Otherwise, the estimation procedure remains the same. However, we lose
fewer observations since the use of materials instead of investment means we need to observe

firms for two consecutive years instead of three.

Cost shares

Alternatively, a TFP measure can be constructed using cost shares as estimates of the labour and
capital coefficients in equation (28) in the main text. The costs of labour and capital were evaluated
by Boutin and Quantin (2008) for each cell defined by the 3-digit industry, the year, and the number
of firm employees (less than 5, 5-20, 20-50, 100, more than 100). The share of capital (resp. labour)
in these costs is denoted B1 ; (resp. fa ). Implicitly, we assume constant returns to scale as we have:
Bit+ Bat = 1. The predicted value-added based on capital and labour is InV/ = B ;In(k;) +

Bo.+In(l;). The following specification can then be estimated with oLs:
3 -
In(Ve) — IV} = o+ Y s +

Denoting ,BS,t and 05 the estimated coefficients, the TFP measure is given by:

¢ =In(Vy) — InVP — Bos— Yo &l
For all methods, the TFP of a firm is the firm-level average of yearly TFP over the period
1994—2002. The TFP estimates we recover with these four approaches are highly correlated. The
correlation between oLs TFp and Olley-Pakes TFp is 0.73. The correlation between oLs TFr and
Levinsohn-Petrin TFP is 0.85. The correlation oLs TFP and cost-shares TP is 0.93. Unsurprisingly,
these alternative methods to estimate TFp give results which are qualitatively similar for A, D, and

S at the sector level.
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Appendix J. Estimations for urban areas

Table J.1: Cities with pop.> 200,000 vs. pop.< 200,000

oLs, mono-establishments

Sector A D S R? obs.
(1) (2) 3) (4) 5)

Food, beverages, tobacco 0.062 0.966 0.003 0.951 21,187
(0.004) * (0.020) (0.002)

Apparel, leather 0.041 1.392 0.009 0.987 5,711
(0.010) * (0.053) * (0.006)

Publishing, printing, recorded media 0.173 1.324 -0.001 0.986 8,991
(0.008) * (0.053) * (0.004)

Pharmaceuticals, perfumes, soap 0.039 1.210 -0.007 0.885 1,014
(0.054) (0.139) (0.056)

Domestic appliances, furniture 0.118 1.217 0.007 0.992 6,172
(0.011) * (0.050) * (0.006)

Motor vehicles 0.076 1.291 0.003 0.818 1,410
(0.035) * (0.179) (0.035)

Ships, aircraft, railroad equipment 0.097 1.140 -0.005 0.798 966
(0.035) * (0.202) (0.039)

Machinery 0.076 1.057 -0.004 0.984 14,084
(0.005) * (0.027) * (0.004)

Electric and electronic equipment 0.079 1.022 -0.003 0.957 5,550
(0.009) * (0.045) (0.005)

Building materials, glass products 0.068 1.077 0.001 0.933 3,048
(0.014) * (0.061) (0.010)

Textiles 0.050 1.101 0.001 0.935 3,273
(0.015) * (0.055) (0.007)

Wood, paper 0.087 1.103 -0.002 0.992 5,629
(0.010) * (0.041) * (0.005)

Chemicals, rubber, plastics 0.075 1.048 0.003 0.969 5,119
(0.010) * (0.041) (0.005)

Basic metals, metal products 0.074 1.056 0.000 0.997 13,911
(0.005) * (0.024) * (0.002)

Electric and electronic components 0.079 1.000 0.002 0.944 2,485
(0.024) * (0.080) (0.042)

Consultancy, advertising, business services 0.190 1.101 -0.006 0.976 35,738
(0.016) * (0.030) * (0.024)

All sectors 0.087 1.241 0.000 0.998 134,275
(0.002) * (0.009) * (0.001)

*: for A and § significantly different from 0 at 5%, for D significantly different from 1 at 5%.
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